Endothelial cells negatively modulate reactive oxygen species generation in vascular smooth muscle cells: role of thioredoxin.
نویسندگان
چکیده
In intact vessels, endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) act as an integrated system, possibly through reactive oxygen species (ROS). Using a coculture system we tested whether ECs modulate VSMC redox status by regulating activity of NAD(P)H oxidase and antioxidants. VSMC production of O(2)(*-), H(2)O(2), and NO was assessed using fluoroprobes and amplex-red. NAD(P)H oxidase subunit expression and oxidase activity were determined by Western blotting and chemiluminescence, respectively. Expression of thioredoxin, SOD, growth signaling pathways (PCNA, p21cip1, CDK4, ERK1/2, p38MAPK) was evaluated by immunoblotting. Thioredoxin activity was assessed by the insulin disulfide reduction assay. In cocultured conditions, VSMC ROS production was reduced by approximately 50% without changes in NAD(P)H oxidase expression/activity versus monoculture (P<0.05). This was associated with decreased cell growth (P<0.05). Expression of Cu/Zn SOD and thioredoxin was increased in coculture versus monoculture VSMCs (P<0.01). Pretreatment of ECs with L-NAME (NOS inhibitor), NS-398 (Cox2 inhibitor), and HET0016 (20-HETE inhibitor) did not influence VSMC ROS formation, whereas CDNB, thioredoxin reductase inhibitor, abolished ROS modulating effects of ECs. These findings indicate that in a coculture system recapitulating intact vessels, ECs negatively regulate ROS production in VSMCs through thioredoxin upregulation. Functionally this is associated with growth inhibition. The modulatory actions of ECs are independent of NOS/NO, Cox2, and HETE and do not involve NAD(P)H oxidase. Our data identify novel mechanisms whereby ECs protect against VSMC oxidative stress, a process that may be important in maintaining vascular integrity.
منابع مشابه
Endothelial Cells Negatively Modulate Reactive Oxygen Species Generation in Vascular Smooth Muscle Cells
In intact vessels, endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) act as an integrated system, possibly through reactive oxygen species (ROS). Using a coculture system we tested whether ECs modulate VSMC redox status by regulating activity of NAD(P)H oxidase and antioxidants. VSMC production of O2 ● , H2O2, and NO was assessed using fluoroprobes and amplex-red. NAD(P)H oxidase...
متن کاملDownregulation of Nuclear Factor Erythroid 2-Related Factor and Associated Antioxidant Genes Contributes to Redox-Sensitive Vascular Dysfunction in Hypertension.
Oxidative stress is implicated in vascular dysfunction in hypertension. Although mechanisms regulating vascular pro-oxidants are emerging, there is a paucity of information on antioxidant systems, particularly nuclear factor erythroid 2-related factor (Nrf2), a master regulator of antioxidants enzymes. We evaluated the vascular regulatory role of Nrf2 in hypertension and examined molecular mech...
متن کاملExpression of glutaredoxin in human coronary arteries: its potential role in antioxidant protection against atherosclerosis.
Oxidative stress is considered an important factor in atherogenesis. Mammalian cells have a complex network of antioxidants such as catalase, superoxide dismutase, and glutathione peroxidase. However, the mechanisms that regulate the cellular redox state in the vessel wall remain unclear. Recent study has shown that thioredoxin, a thiol-disulfide oxidoreductase, is expressed in atherosclerotic ...
متن کاملReactive oxygen species regulate the quiescence of CD34-positive cells derived from human embryonic stem cells.
AIMS Reactive oxygen species (ROS) are involved in a wide range of cellular processes. However, few studies have examined the generation and function of ROS in human embryonic vascular development. In this study, the sources of ROS and their roles in the vascular differentiation of human embryonic stem cells (hESCs) were investigated. METHODS AND RESULTS During vascular differentiation of hES...
متن کاملMitochondria as signaling organelles in the vascular endothelium.
Vascular endothelial cells are highly glycolytic and consume relatively low amounts of oxygen (O(2)) compared with other cells. We have confirmed that oxidative phosphorylation is not the main source of ATP generation in these cells. We also show that at a low O(2) concentration (<1%) endogenous NO plays a key role in preventing the accumulation of the alpha-subunit of hypoxia-inducible factor ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 54 2 شماره
صفحات -
تاریخ انتشار 2009